Most of the focus is on the heart of the vehicle market, combining as much as possible among B-, C- and CD-platforms, which account for the bulk of global sales volume, Hoffecker says, adding it will continue to get tougher for smaller players to remain viable.

“If you’re in the classic B-segment, C-segment, D-segment of the world, having that scale advantage where you can really leverage the volume, leverage the suppliers in a different way…I think it gets harder and harder (for smaller automakers) to compete,” the AlixPartners consultant says.

That B-C sector is exactly where global giant GM is setting its sights with a new more flexible architecture, John Calabrese, head of global engineering, reveals in an interview with WardsAuto. The new architecture will consist of interchangeable front, rear and center sections, he says, a setup that sounds similar to Renault’s CMF-A and likely incorporates some of the same theories.

“We have a methodology around the powertrain business with cylinder sets, and we’re kind of looking at it with vehicle sets,” he says. “You start to put some stakes in the ground and say this is how we are going to architect the B- and C-segment vehicles. And I am going to have interchangeability between those.”

But skeptics question whether such extreme product flexibility being engineered-in at VW, Renault, GM and others is warranted – or even doable.

J.P. Morgan declared last December the MQB would “set a benchmark for auto manufacturing going forward.” But ever since original estimates predicted VW’s $70 billion MQB strategy would save €5 billion ($6.8 billion) over the first three years, financial analysts have been backing down.

Bernstein Research analyst Max Warburton has declared potential savings from MQB “overhyped,” saying VW already is highly efficient and any further gains stemming from the new platform will be modest, not the 20% the automaker initially projected.

“There is absolutely no way a new platform can save 20% of the cost of a vehicle at VW’s level of scale,” he says in a report issued in March.

Some industry insiders long have been suspicious about how much parts sharing will be possible – or even desirable – with vehicles that vary significantly in track size or are positioned at opposite ends of the price spectrum. Can a €30,000 ($41,000) Volkswagen Passat really have much in common with a €10,000 ($13,500) Polo? Would Volkswagen really want it to?

“Either VW can engineer a Polo with Passat-level weight, rigidity and specifications or a Passat with Polo-grade components,” Warburton writes. “Most industry experts think VW will end up with a much-too-expensive small-car platform, with oversized parts.”

Because there are inconsistent definitions about what constitutes a single vehicle architecture and how common “common parts” really are, it will be awhile before anyone can say whether MQB, CMF-A and others are really game-changers or just sexier examples of a much slower platform evolution taking place industrywide.

“There is a little more flexibility going on,” Mark Chernoby, vice president-engineering for Chrysler, tells WardsAuto. “(But) you have to be careful. People like to use these dialogues that sound good to financial analysts and media (suggesting), ‛I’ve got a common platform that is now modular.’

“But if you put (some of today’s platform-sharing vehicles) on a hoist, they’re vastly different. You may find the front body structure and the engine compartment’s the same, but everything behind it is unique.”

Volvo CEO Hakan Samuelsson points across the floor of January’s Detroit auto show. “Go to that stand at Volkswagen and start looking at how many mirrors do they really have there,” he tells WardsAuto. “I can see they are all different from here. So at least they have no economy of scale of the mirrors.

“Let’s see the side doors – a huge investment in pressing tools. No economy of scale (there either). So maybe it is not that (cost-) effective as you believe.”