Keys to Securing In-Vehicle Apps

Over-the-air updates must flow securely from server to vehicle with minimal risk that the data will be intercepted and compromised.

Chris Clark

June 20, 2023

5 Min Read
OTA screenshot (KPIT)
OTA updates will enable OEMs to provide a continuous refreshed experience for drivers, open new revenue streams.KPIT

We’re in the age of software-defined vehicles, where automotive functions and features are driven more by software than by mechanical components. Over-the-air (OTA) updates allow automakers to correct software bugs, deliver new capabilities (including apps) and assess the vehicle’s operation. This way of constantly modifying the vehicle also presents opportunities for collaboration with third parties for new offerings and new revenue streams.

However, as with any electronic system, vehicles can be ripe for cyberattack if not properly protected. OTA updates, especially when they involve third parties, represent a potential area of vulnerability.

Software Drives Automotive Evolution

OTA updates are delivered over a cellular network, Wi-Fi, or other radio frequency-based methods that provide software updates. This grouping of technologies offers a fast and convenient way for vehicle manufacturers to resolve issues and future-proof their cars, all without requiring car owners to visit the dealer. Currently, there’s no standardized way in the automotive industry to verify software updates. As such, it’s possible for an OEM to have multiple ways to confirm software updates for some of its components or to rely on a complex supply chain for the delivery of these updates.

In the U.S., NHTSA offers security guidance through its Cybersecurity Best Practices for the Safety of Modern Vehicles report. The report outlines steps for vehicle manufacturers to take to mitigate the risk of cyberattacks. NHTSA isn’t alone in this endeavor; the EU has issued UN Regulation No. 155, which clearly requires that vehicles can be updated with OTA capabilities in order to sell in that market.

Efforts generally begin with a risk assessment, outlining components in a vehicle that any application would interact with. But then, there are a lot of questions about risk and responsibilities.

As an example, let’s consider a self-parking application that’s activated by a smartphone. The vehicle in question already has autonomous driving capabilities. However, to enable self-parking, the driver needs to install an app that is tied to a parking garage company and must be allowed to communicate with the vehicle. For this application to work, the automaker needs to provide a location and other vehicular data to the app so that the car can navigate safely through the garage to an available parking spot once prompted by the driver.

In-vehicle apps represent a new revenue stream, and the opportunities are wide open for a host of new and exciting capabilities. The apps themselves must have built-in protections against malicious attacks. When they’re ready to be updated, the OTA updates must flow securely from server to vehicle, with little risk that the data will be intercepted and compromised.

These days, automakers and app developers are collaborating closely, though a primary focus is getting new capabilities to market. At the consumer level, it may be several years before we start seeing these examples come to fruition. Enterprise-level innovations may come sooner. Regardless of when these new offerings are available, the time is ripe to start addressing the security considerations.

Keeping Vehicles Safe and Secure, Inside and Out

The risk assessment is a solid starting point that requires the right people for the task. Also important is assigning areas of responsibility, as well as accounting for the steps and actions needed to mitigate security risks. AutoAutomakers would be wise not to rely on third-party app developers to understand the security requirements of their vehicles. These requirements will vary widely across vehicle types and manufacturers.

A secure set of application programming interfaces for the app developers is a good safeguard and opens an opportunity to monitor and limit access. This way, if anything inappropriate happens with the app, the vehicle would know how to react and potentially protect itself. Another important element is establishing a protective layer for the vehicle subsystems, enabling a safe, secure way for third parties to interact with the vehicle to deliver value-added services.

Key elements of an effective OTA software update security program include having a robust public key infrastructure, well-defined software verification and validation practices, and effective vehicle software deployment, storage and activation. The automotive industry can also take some lessons from the mobile device industry – smartphone makers, for example, must apply robust security measures to ensure that their devices, the apps installed on them and the data accessible by these apps remain safe and secure.

A variety of security and monitoring technologies are available to support automakers. For the vehicles themselves, automotive engineers can employ electronic digital twin solutions, which provide virtual environments to test silicon solutions before they are deployed. As we see more consolidation of in-vehicle compute platforms, traditional methods to test silicon for security become impractical given all the touch points in these complex environments.

Chris Clark headshot.jpg

Chris Clark headshot_3

On the software side, static application security testing, fuzz testing and application vulnerability correlation are among the solutions available to safeguard in-vehicle apps and OTA updates as they uncover security weaknesses and diagnose/manage software risk.

OTA updates are an efficient and cost-effective way for automakers to future-proof vehicles, provide updates or keep cars out of dealerships for recall fixes. As with any electronic component or software solution, these updates, as well as the in-vehicle apps that enrich the driver experience, can be vulnerable to cyberattacks. Conducting a thorough risk assessment, assigning areas of security responsibility and deploying both hardware and software security solutions can help keep vehicles safe and sound for the long haul.

Chris Clark (pictured, above left) is senior manager for Synopsys’ Automotive Group.

You May Also Like